Modeling Focused Ultrasound Exposure for the Optimal Control of Thermal Dose Distribution
نویسندگان
چکیده
Preclinical studies indicate that focused ultrasound at exposure conditions close to the threshold for thermal damage can increase drug delivery at the focal region. Although these results are promising, the optimal control of temperature still remains a challenge. To address this issue, computer-simulated ultrasound treatments have been performed. When the treatments are delivered without taking into account the cooling effect exerted by the blood flow, the resulting thermal dose is highly variable with regions of thermal damage, regions of underdosage close to the vessels, and areas in between these two extremes. When the power deposition is adjusted so that the peak thermal dose remains close to the threshold for thermal damage, the thermal dose is more uniformly distributed but under-dosage is still visible around the thermally significant vessels. The results of these simulations suggest that, for focused ultrasound, as for other delivery methods, the only way to control temperature is to adjust the average energy deposition to compensate for the presence of thermally significant vessels in the target area. By doing this, we have shown that it is possible to reduce the temperature heterogeneity observed in focused ultrasound thermal treatments.
منابع مشابه
Numerical Study for Optimizing Parameters of High-Intensity Focused Ultrasound-Induced Thermal Field during Liver Tumor Ablation: HIFU Simulator
Introduction High intensity focused ultrasound (HIFU) is considered a noninvasive and effective technique for tumor ablation. Frequency and acoustic power are the most effective parameters for temperature distribution and the extent of tissue damage. The aim of this study was to optimize the operating transducer parameters such as frequency and input power in order to acquire suitable temperatu...
متن کاملCytogenetic effectes of continuos therapeutic ultrasound waves on human lymphocytes in G0 phase of cell cycle
In spite of wide spread investigations performed,the biological effects of ultrasound waves,specially on DNA molecule has not been fully understood.since any alteration in DNA molecule can lead to chromosome abnormality,the study of clastogenic effects of ultrasound is important.in this study,the effect of 1MHz frequency continuous waves with the power of 0.5,1 and 1.5 watts on G human lymphocy...
متن کاملTime-course Characterization of High-intensity Focused Ultrasound Exposure Using B-mode Ultrasound Imaging
High-Intensity Focused Ultrasound (HIFU) is an emerging non-invasive surgical technique. HIFU systems are generally designed to deliver a fixed amount of energy to tissue, but because the tissue thermal response is variable across patients and tissue type, this approach can often lead to underdosing or overdosing. In order to improve the dosing precision in HIFU we are investigating real time m...
متن کاملLow intensity ultrasound mechanical index as a parameter affecting of ability of proliferation and collagene type 1 expression of cells
Introduction: Mechanical index (MI) is used for quantifying acoustic cavitation and the relationship between acoustic pressure and the frequency. In this study, modeling of the MI was applied to provide treatment protocol and to understand the effective physical processes on reproducibility and gene expression of fibroblast cells. Skin damage can occur of burn, cuts, abrasions ...
متن کاملAn optimal semi-active thermal exchange-Fuzzy logic Controller for Structural Dynamic Control and Rehabilation
The effect of intelligent semi-active thermal exchange-fuzzy controller in structural rehabilitation by attenuating seismic responses of structural systems is investigated. In the suggested control system, MR dampers and sensors are employed as a semi-active controller. Resultant control forces of MR damper are administrated by providing external voltage supply, during the earthquakes and high ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012